NOTES

1. Erosion and Sediment Controls to be integrated if practicable
2. Strip topsoil where necessary and place in locations with "independent" erosion and sediment control can be established
3. Decanting earth bunds to be established with dirty water diversion taking flows to DEBs
4. Assembly is largely in cut material and will be stabilised as cut progresses
5. Clean water diversion may need to be established above the work location once specific on site verification confirmed
6. Fill site as shown indicative only and will be established with maximum batter slopes of 10 degrees to minimise erosion and allow future stock grazing
7. Stock exclusion to occur during earthworks activity
8. All principles as per ESCP section 6 to apply
9. Detailed design to be established prior to any earthworks occurring
10. HRC dross and sediment control guidelines to apply
11. Monitoring to occur as per ESCP section 11 with an adaptive continuous improvement approach
1. All culverts to be installed in dry period. This period should match the culvert construction period.
2. Sandbag or alternative non-erosible barrier to be placed upstream and downstream. Flows to be pumped around works area.
3. Biological input will be obtained as necessary.
4. Any dirty water pumped from culvert location will be pumped to turkey's nest which will then flow over grass prior to stream.
5. Provision will be made for rain events and stabilised flow paths as necessary.
6. Stock exclusion to occur during streamworks activity.
7. All principles as per ESCP section 5.0 to apply.
8. Detailed design to be established prior to any streamworks occurring.
9. HIC erosion and sediment control guidelines to apply.
10. Monitoring to occur as per ESCP section 11 with an adaptive continuous improvement approach.

Any pumping of dirty water will be to turkey’s nest and grass buffer zone.
Appendix B: Typical ESC Design Details
DIVERSION TO BE LINED TO MINIMISE EROSION WHEN ON GRADIENTS GREATER THAN 2% AND OR WHERE FLOW VELOCITIES EXCEED 1m/sec

DESIGN FLOW DEPTH = 5% AEP STORM

300mm MIN FREEBOARD

MAXIMUM SLOPE 1:3

COMPACTED EARTH BUND

HYDROSEEDED & MULCHED

MAXIMUM SLOPE 1:2

EXISTING VEGETATION TO REMAIN UNDISTURBED

FLOW

CLEAN WATER RUNOFF DIVERSION BUND

MAXIMUM SLOPE 1:3

COMPACTED EARTH BUND

FLOW

DIRTY WATER RUNOFF DIVERSION BUND

300mm MIN FREEBOARD

MAXIMUM SLOPE 1:3

1m

ORIGINAL GROUND

NOTE: FINAL DESIGN TO BE CONFIRMED IN SITE SPECIFIC EROSION AND SEDIMENT CONTROL PLAN
SEDIMENT PIT CUT INTO LEVEL IN SITU SOIL MIN. 1m DEEP

ROAD/TRACK CUT AND COVER METHODOLOGY

OVERFLOW FLOW DIRECTION

FLOW

FLOW

EVEN SLOPE INTO SEDIMENT PIT TO AVOID EROSION (1:5 GRADE)

TOPSOIL BUNDS (GRASSED) TO ENSURE ALL FLOWS EXIT OVER LEVEL LIP

VEGETATED LEVEL LIP TO SPREAD OVERFLOWS EVENLY

OVERFLOW FLOW

NOTE:

FINAL DESIGN TO BE CONFIRMED IN SITE SPECIFIC EROSION AND SEDIMENT CONTROL PLAN

ALL SEDIMENT PITS TO DISCHARGE OVER GRASS

SEDIMENT PITS STANDARD DETAILS

1. FOR INFORMATION PURPOSES ONLY.
2. BOUNDARIES, CONTOURS AND OTHER BASE INFORMATION SHOWN IS INDICATIVE ONLY AND PRIMARILY INFORMED BY AERIAL LIDAR SURVEY BY SYNERGY POSITIONING SYSTEMS LTD IN APRIL 2016.
3. COORDINATES SHOWN ARE IN TERMS OF WRE EDEN 2000 CIRCUIT AND LEVELS ARE RELATIVE TO THE AUCKLAND 1946 VERTICAL DATUM.
4. THE PROPOSED ROAD ALIGNMENT, TURBINE PLATFORMS AND OVERALL EARTHWORKS ARE BASED ON AN INDICATIVE ROAD ALIGNMENT AND REMAIN SUBJECT TO DETAILED DESIGN.
5. FINAL DESIGN OF DETAILS TO BE CONFIRMED IN SITE SPECIFIC EROSION AND SEDIMENT CONTROL PLAN
ELEVATION

CROSS SECTION

STANDARD ROCK CHECK DAM

<table>
<thead>
<tr>
<th>SLOPE</th>
<th>SPACING (m) BETWEEN DAMS [450mm CENTRE HEIGHT]</th>
<th>SPACING (m) BETWEEN DAMS [600mm CENTRE HEIGHT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% OR LESS</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>2% - 4%</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4% - 7%</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>7% - 10%</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>OVER 10%</td>
<td>USE STABILISED CHANNEL</td>
<td>USE STABILISED CHANNEL</td>
</tr>
</tbody>
</table>

NOTE: FINAL DESIGN TO BE CONFIRMED IN SITE SPECIFIC EROSION AND SEDIMENT CONTROL PLAN
1. For information purposes only.
2. Boundaries, contours and other base information shown is indicative only and primarily informed by aerial LIDAR survey by Synergy Positioning Systems Ltd in April 2016.
3. Coordinates shown are in terms of Ave Eden 2000 circuit and levels are relative to the Auckland 1946 Vertical Datum.
4. The proposed road alignment, turbine platforms, and overall earthworks are based on an indicative road alignment and remain subject to detailed design.
5. Final design of details to be confirmed in site specific erosion and sediment control plan.
GEOTEXTILE SECURED FIRMLY TO THE BARE AREAS TO BE STABILISED WITH RETAINING THE EXISTING GRASS COVER. EXISTSING GROUND WHERE POSSIBLE, CONCRETE, GEOTEXTILE OR OTHER WIDE SHALLOW LEVEL SPILLWAY OVER UNDERNEATH RIP RAP PLACED AT POND OUTLET WITH GEOTEXTILE PLACED DE-SLUDGING OF POND IF THERE ARE NOT ENOUGH TO ENSURE MACHINERY ACCESS FOR OTHER ACCESS POINTS AVAILABLE.

EMBANKMENT FACE POURRED CONCRETE ANTI-SEEP COLLAR TYPICAL POND OUTLET PLAN & SECTION VIEWS TYPICAL POND ISOMETRIC PLAN VIEWS BELOW THE SPILLWAY INVERT POND TO A DEPTH OF AT LEAST 500mm GEOTEXTILE SHOULD BE LAID INTO THE LARGE ROCK TO BREAK UP FLOW PINNED GEOTEXTILE OVERLAID WITH FREEBOARD MINIMUM 300mm DISCHARGE PIPE LAID AT 300mm DIAMETER EMERGENCY SPILLWAY TO BE AEP EVENT WITHOUT ERODING Sized TO ACCOMMODATE THE 1% CONCRETE AND PINNING APPROPRIATE GEOTEXTILE / TO ELIMINATE ALL VOIDS PRIOR TO LAYING SPILLWAY COMPACTED AND SMOOTHED 3:1 BATTER TO BE SMOOTHED AND STABILISED OTHERWISE JUST THE OUTER BATTER NEEDS TO BE STABALISED THROUGH A WINTER PERIOD, THE POND IS TO REMAIN ENTERS AT THE INLET END BUND TO ENSURE ALL FLOW RUNOFF DIVERSION CHANNEL / FOREBAY 1m DEEP.

AND 2m WIDE SEDIMENT FOREBAY 1m DEEP LEVEL SPREADER FULL WIDTH OF INLET END. STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOGRID WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.

LEVEL SPREADER 100mm x 50mm TIMBER WEIR CONCRETE HAUNCHING AROUND LEVEL SPREADER GEOTEXTILE WRAPPED LEVEL SPREADER AND CONCRETE HAUNCHING 3/1 BATTER TO BE SMOOTHED AND TIE OF VOIDS LEVEL SPREADER FULL WIDTH OF INLET END, STABILISED FROM THE BEGINNING OF THE INLET TO THE POND INVERT WITH 2 LAYERS OF GEOTEXTILE.
SUPER SILT FENCE STANDARD DETAIL

UPPER TENSIONED GALVANISED WIRE

LOWER TENSIONED GALVANISED WIRE

GROUND LEVEL

FLOW

400mm MIN

800mm MIN

200mm MIN

1m MIN

ELEVATION

CHAIN LINK FENCING BETWEEN POSTS AND GEOTEXTILE

GEOTEXTILE - 2nd LAYER

GEOTEXTILE - 1st LAYER

FLOW

WARRATAH BACK STAYS INSTALL AS EXTRA SUPPORT WHERE REQUIRED

EMBED GEOTEXTILE AND NETTING SUPPORT 200mm MIN. INTO GROUND (COVER WITH SUITABLE BACKFILL AND COMPACT)

CROSS SECTION

NOTE:
FINAL DESIGN TO BE CONFIRMED IN SITE SPECIFIC EROSION AND SEDIMENT CONTROL PLAN
T-BAR DECANT FIXED TO WARRATAH STAKES WITH NYLON CORD

250mm FREEBOARD

EMERGENCY SPILLWAY

STABILISED SPILLWAY

SPOILLWAY STABILISED WITH TWO LAYERS OF GEOTEXTILE (MIN. WIDTH = 2m)

STABILISED SPILLWAY

100mm PVC PIPE THROUGH BUND

ENGINEERED FILL ON COMPACTED GROUND

T-Bar Decanting Earth Bund

NOTE:
final design to be confirmed in site specific erosion and sediment control plan

DECANT DETAIL

100mm DIAMETER PVC PIPE UPSTAND WITH TOP POSITIONED 100mm BELOW THE LEVEL OF EMERGENCY SPILLWAY. THE TREATMENT VOLUME IS TO BE MEASURED TO THE TOP OF THE UPSTAND

250mm LONG 100mm DIAMETER PVC PIPE FLOAT WITH STANDARD 100mm END CAPS. FLOAT STRAPPED TO 40mm DIAMETER PVC DECANT PIPE WITH STAINLESS STEEL STRAPS OR ZIP TIES.

NYLON CORD TIES TO SUSPEND DECANT FROM WARRATAHS AT CORRECT HEIGHT

100mm PVC PIPE UPSTAND

STANDARD 40mm TEE JOINT (GLUED)

FLEXIBLE RUBBER/NEOPRENE JOINT (SUCH AS PLUMBQWIK) HOSE CLAMPED

100mm TO 40mm REDUCER FITTING TO BE GLUED

STANDARD 100mm TEE JOINT (GLUED)

JOIN TO BE MADE USING PK SCREWS AND CONSTRUCTION TAPE

WIRE OR STEEL STRAPS TO JOIN DECANT AND FLOAT

STANDARD END CAPS

500mm LONG 100mm DIAMETER PVC PIPE FLOAT WITH STANDARD 100mm END CAPS. FLOAT STRAPPED TO 40mm DIAMETER PVC DECANT PIPE WITH STAINLESS STEEL STRAPS OR ZIP TIES.

252mm FREEBOARD

EMERGENCY SPILLWAY

STABILISED SPILLWAY

SPOILLWAY STABILISED WITH TWO LAYERS OF GEOTEXTILE (MIN. WIDTH = 2m)
Appendix C: Weekly ESC Check List
WEEKLY ENVIRONMENTAL INSPECTION CHECKSHEET

CONTRACT NAME: Kaimai Wind Farm Chainage and Location

DATE:

TIME and WEATHER CONDITIONS:

NAME OF PERSON CARRYING OUT THE INSPECTION:

<table>
<thead>
<tr>
<th>INSPECTION</th>
<th>MAINTENANCE REQUIRED</th>
<th>PASSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All of the erosion and sediment controls on site have been checked that they are free from rubbish and the operational</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>2. All of the DEBs and SRPs on site have been checked and are fit for purpose.</td>
<td>Yes / No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>• DEB #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• DEB #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SRP 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SRP 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. All forebays have been checked and sediment removed if necessary</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>4. All dirtywater diversions have been inspected and are compliant with Guidelines and ESCP</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>5. All stabilisation is in place and compliant with stabilised surfaces as required</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>6. There is no sediment being washed directly to any watercourses</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>7. All site accesses are clean</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>8. All silt fences are maintained</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>9. All previous actions as identified have been fixed as necessary</td>
<td>Yes / No</td>
<td></td>
</tr>
<tr>
<td>10. It is confirmed that all earthworks areas have been viewed and risks identified</td>
<td>Yes / No</td>
<td></td>
</tr>
</tbody>
</table>

Comment on remedial works noted above with recommended action and required completion date. If urgent works noted these shall be immediately reported to the Project Manager.

SIGNED: __________________________ **PRINT NAME:** __________________________